Proof of the Gaussian Integral Using the Wallis Integral
Proposition
The following holds:
$$ \int_{-\infty}^{\infty}e^{-x^2}dx = \sqrt{\pi} $$
Proof
Lemma
For $x \ne 0$, the following inequalities hold:
$$ 1 - x^2 < e^{-x^2} < \frac{1}{1 + x^2} $$
Proof of the lemma
For $x \ne 0$,
$$ e^x > 1 + x $$
In fact, the right-hand side is the Taylor expansion truncated after the second term of the left-hand side, representing the tangent line of $y = e^x$ at $x=0$.
Since $y = e^x$ is convex (as $e^x > 0$ even after two derivatives), $y = e^x$ lies above the tangent line $y = 1 + x$.
Therefore, $ e^x > 1 + x $ holds.
By substituting $-x^2$ for $x$ in this inequality, we get $1 - x^2 < e^{-x^2}$.
Also, substituting $x^2$ for $x$ and taking the reciprocal gives $e^{-x^2} < \frac{1}{1 + x^2}$.
Substitution in the Wallis Integral
Consider the Wallis integral
$$ I_m = \int_{0}^{\frac{\pi}{2}}{\sin^m{x}dx} $$
Substitution $y=\cos{x}$
By subsituting $y=\cos{x}$ for $I_{2n+1}$,
$$ I_{2n+1} = \int_{0}^{\frac{\pi}{2}}{\sin^{2n}{x}\sin{x}dx} = \int_{1}^{0}{(1 - y^2)^n(-\frac{dy}{dx})dx} = \int_{0}^{1}{(1 - y^2)^ndy} = \int_{0}^{1}{(1 - x^2)^ndx} $$
Substitution $y=\cot{x}$
By subsituting $y=\cot{x}$ for $I_{2n+1}$,
$$ I_{2n-2} = \int_{0}^{\frac{\pi}{2}}{\sin^{2n}{x}\frac{1}{\sin^2{x}}dx} = \int_{\infty}^{0}{\frac{1}{(1 + y^2)^n}(-\frac{dy}{dx})dx} = \int_{0}^{\infty}{\frac{1}{(1 + y^2)^n}dy} = \int_{0}^{\infty}{\frac{1}{(1 + x^2)^n}dx} $$
Evaluation of the Gaussian Integral
Let
$$ I = \int_{0}^{\infty}e^{-x^2}dx $$
By substituting $x = \sqrt{n}y$,
$$ I = \int_{0}^{\infty}e^{-ny^2} \sqrt{n}dy = \sqrt{n}\int_{0}^{\infty}e^{-nx^2} dx $$
From the lemma,
$$ \sqrt{n}\int_{0}^{1}(1-x^2)^n dx < \sqrt{n}\int_{0}^{1}e^{-nx^2} dx < I < \sqrt{n} \int_{0}^{\infty}\frac{dx}{(1+x^2)^n} $$
Since the leftmost and rightmost terms are in the same form as the Wallis integral after substitution, we ultimately have:
$$ \sqrt{n}I_{2n+1} < I < \sqrt{n}I_{2n-2} $$
As seen from Wallis' Formula,
$$ \lim_{m \to \infty} \sqrt{m}I_{m} = \sqrt{\frac{\pi}{2}} $$
so,
$$ \sqrt{n}I_{2n+1} = \frac{\sqrt{n}}{\sqrt{2n+1}}\sqrt{2n+1}I_{2n+1} \to \frac{1}{\sqrt{2}} \sqrt{\frac{\pi}{2}} = \frac{\sqrt{\pi}}{2} (n \to \infty) $$
$$ \sqrt{n}I_{2n-2} = \frac{\sqrt{n}}{\sqrt{2n-2}}\sqrt{2n-2}I_{2n-2} \to \frac{1}{\sqrt{2}} \sqrt{\frac{\pi}{2}} = \frac{\sqrt{\pi}}{2} (n \to \infty) $$
Therefore,
$$ I = \frac{\sqrt{\pi}}{2} $$
Adjustment of the Integration Interval
Since the integrand is an even function,
$$ \int_{-\infty}^{\infty}e^{-x^2}dx = 2I = \sqrt{\pi} $$
Thus, the result is proved.